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1 Introduction

We describe an ad hoc approach to evaluation and interpolation phases of some Toom-Cook multiplication methods
for long integers, when at least one factor is even. In particular, the classical Toom-3 method (with balanced and
unbalanced factors) and the Toom-3.5 method (with slightly and very unbalanced factors) are presented. General
possible optimizations of Toom-4.5 and Toom-5 are also shown.

2 Toom-3 classical method

Long integer multiplications is standardly reduced to polynomial multiplications by considering as coefficients ai, bi

the digits of a certain base B expansion of the factors (for computer applications, typically B = 232k for some k). The
classical Toom-Cook method [5], [3] – Toom-3 for short – applies when B is such that the obtained polynomials have
both degree 2 (balanced case) or 3 and 1, respectively (unbalanced case). Coefficients multiplication is similarly treated
by recursion, up to a certain threshold when Karatsuba or high school multiplication methods are more effective.

2.1 Complexity issues

We note that if ai, bi length (number of bits in base 2 expansion) in evaluation phase is n, in interpolation phase
the coefficients length is about 2n. In order to analyze complexity, we consider the possible availability of an ad hoc
function: consider, for e ∈ Z, the following two equivalent processes (I) and (II)

(I)
T← 2eX;
Z← Y ±T; ; (II) Z← Y ± 2eX;

for which one could write a shift-add function sa(X,Y, e, op) 7→ (Y + sign(op)2eX) (with op ∈ {−1, 1}) performing
(II) process, which reads X, Y just once and uses no temporary variable, taking benefit of code locality. As memory
access is much more time consuming than computing, the less we read/write data, the better it is.

A reasonable computational model to
analyze the complexity of interpolation was
proposed by Bodrato and Zanoni in [2] –
where unbalanced Toom–(n+1/2) methods
are also introduced – considering operations
costs represented by the constants reported

Operation Time Operation Time
Sign change unitary − ∼ 0 Shift � , � S

Addition + A Division by k / D(k)

Subtraction − A Shift-add sa A + 1 2

in the aside table, referring to the execution time of additions/subtractions, shifts (multiplications/divisions by power
of 2), exact divisions by small constants and sa, whose real values depend on the particular chosen architecture. The
indicated costs are relative to the operands (maximum) length: as all operations are linear, costs are proportional to
it. This means for example that there is a multiplicative factor 2 distinguishing evaluation and interpolation costs, as
operands in interpolation phase have more or less double length with respect to the ones in the evaluation phase.

Obviously we have 1 2 6 S. If sa is not available, process (I) must be used, so that 1 2 = S and one more
temporary variable is possibly needed. As the shift operation must read only one operand in memory instead of the
two ones needed by additions/subtractions, we reasonably also suppose that S 6 A.
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2.2 Method description

The balanced version of Toom-3 method considers two quadratic polynomials:

a(x) = a2x
2 + a1x + a0 ; b(x) = b2x

2 + b1x + b0

For the unbalanced version (when a(x) and b(x) have different degrees) we instead have

a(x) = a3x
3 + a2x

2 + a1x + a0 ; b(x) = b1x + b0

To find the coefficients of their product c(x) = a(x)b(x) by using the EMI scheme, we first consider the values wi

obtained by evaluating a(x)b(x) in the five interpolation points {∞, 2,−1, 1, 0}, as shown below:

Balanced Unbalanced

M1 a2b2 a3b1 = w4 = c4

M2 (4a2 + 2a1 + a0)(4b2 + 2b1 + b0) (8a3 + 4a2 + 2a1 + a0)(2b1 + b0) = w3 = 16c4 + 8c3 + 4c2 + 2c1 + c0

M3 (a2 − a1 + a0)(b2 − b1 + b0) (a3 − a2 + a1 − a0)(b1 − b0) = w2 = c4 − c3 + c2 − c1 + c0

M4 (a2 + a1 + a0)(b2 + b1 + b0) (a3 + a2 + a1 + a0)(b1 + b0) = w1 = c4 + c3 + c2 + c1 + c0

M5 a0b0 a0b0 = w0 = c0

In both cases we have

w = Mc with M =


1 0 0 0 0

16 8 4 2 1
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1

 ; w =


w4

w3

w2

w1

w0

 ; c =


c4

c3

c2

c1

c0


so that c = M−1w (Mi corresponds to the ith line of the matrix).

In [1] Bodrato found the aside shown evaluation pro-
cedure for balanced factors in the three more “delicate”
points {1,−1, 2} (we show the results ui for a; values vi

for factor b are similarly obtained – we have wi = uivi):
the total evaluation cost for both factors is 2(5A + 1 2) =
10A + 2( 1 2).

a2 a1 a0

1) u2 = a2 + a0 [ 1 0 1 ] A
2) u1 = u2 + a1 [ 1 1 1 ] A
3) u2 = u2 − a1 [ 1 −1 1 ] A
4) u3 = u1 + a2 [ 2 1 1 ] A
5) u3 = (u3�1)− a0 [ 4 2 1 ] A + 1 2

(1)

The unbalanced version is instead realized as follows, with a slightly bigger cost: [7A+3( 1 2)]+3A = 10A+3( 1 2)

a3 a2 a1 a0

1) u3 = a2 + a0 [ 0 1 0 1 ] A
2) u2 = a3 + a1 [ 1 0 1 0 ] A
3) u1 = u2 + u3 [ 1 1 1 1 ] A
4) u2 = u2 − u3 [ 1 −1 1 −1 ] A
5) u3 = a2 + (a3�1) [ 2 1 0 0 ] A + 1 2
6) u3 = a1 + (u3�1) [ 4 2 1 0 ] A + 1 2
7) u3 = a0 + (u3�1) [ 8 4 2 1 ] A + 1 2

b1 b0

8) v1 = b1 + b0 [ 1 1 ] A
9) v2 = b1 − b0 [ 1 −1 ] A

10) v3 = v1 + b1 [ 2 1 ] A

(2)

Zimmermann, in GMP library [4] version 4.2.1, proposed the following sequence of operations (inversion sequence,
or IS for short) to invert M .

M =

0BBBB@
1 0 0 0 0

16 8 4 2 1
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1

1CCCCA
M2+(2)M3

=⇒

0BBBB@
1 0 0 0 0

18 6 6 0 3
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1

1CCCCA
M2/(3)

=⇒
M3+M4

0BBBB@
1 0 0 0 0
6 2 2 0 1
2 0 2 0 2
1 1 1 1 1
0 0 0 0 1

1CCCCA

M2+M5
=⇒

M3�(1)

0BBBB@
1 0 0 0 0
6 2 2 0 2
1 0 1 0 1
1 1 1 1 1
0 0 0 0 1

1CCCCA
M2�(1)

=⇒
M2−(2)M1

0BBBB@
1 0 0 0 0
1 1 1 0 1
1 0 1 0 1
1 1 1 1 1
0 0 0 0 1

1CCCCA
M4−M2

=⇒

0BBBB@
1 0 0 0 0
1 1 1 0 1
1 0 1 0 1
0 0 0 1 0
0 0 0 0 1

1CCCCA
M2−M3

=⇒

0BBBB@
1 0 0 0 0
0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
0 0 0 0 1

1CCCCA
M3−M1

=⇒
M3−M5

I
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with computational cost costGMP = 8A + D(3) + 2S + 2( 1 2)

More efficient inversion sequences have already been found by exhaustive search in [2] with smaller cost:

costBZ = 8A + D(3) + 2S + ( 1 2)

3 Toom-3 with (at least) an even factor

We consider here the case in which at least one of a0, b0 is even, so that c0 = a0b0 is even, too. This happens in 75 %
of all possible cases, and its detection is quite fast (just test the least meaningful bit of a0 and possibly b0). We will
distinguish the balanced and unbalanced versions.

3.1 Evaluation phase: the balanced case

Factors have here the same degree. To fix ideas, without loss of generality let’s suppose a0 is even. Then, from

M2 : (4a2 + 2a1 + a0)(4b2 + 2b1 + b0) = 16c4 + 8c3 + 4c2 + 2c1 + c0

dividing by 2 both sides we still obtain integer numbers

M ′2 :
(

2a2 + a1 +
a0

2

)
(4b2 + 2b1 + b0) = 8c4 + 4c3 + 2c2 + c1 +

c0

2

The new evaluation sequence (ES, for short) for factor
a is shown aside. It has exactly the same computational
complexity of (1): note infact that we do not have to ex-
plicitly divide by 2. This will help us in the interpolation
phase, permitting to save one shift.

a2 a1 a0

1) u2 = a2 + a0 [ 1 0 1 ] A
2) u1 = u2 + a1 [ 1 1 1 ] A
3) u2 = u2 − a1 [ 1 −1 1 ] A
4) u3 = u2 + a2 [ 2 1 1 ] A
5) u3 = u3 − (a0�1)

[
2 1 1

2

]
A + 1 2

3.2 Evaluation phase: the unbalanced case

In the unbalanced case we have deg(a) = 3 and deg(b) = 1. We have two asymmetrical subcases:

– When a0 is even we have

M ′2 :
(

4a3 + 2a2 + a1 +
a0

2

)
(2b1 + b0) = 8c4 + 4c3 + 2c2 + c1 +

c0

2

and the new evaluation of the first factor is slightly different but not worse than before: the whole evaluation cost
does therefore not change with respect to the balanced case.

a3 a2 a1 a0

1′) u3 = a2 + a0 [ 0 1 0 1 ] A
2′) u2 = a3 + a1 [ 1 0 1 0 ] A
3′) u1 = u2 + u3 [ 1 1 1 1 ] A
4′) u2 = u2 − u3 [ 1 −1 1 −1 ] A
5′) u3 = a2 + (a3�1) [ 2 1 0 0 ] A + 1 2
6′) u3 = a1 + (u3�1) [ 4 2 1 0 ] A + 1 2
7′) u3 = u3 + (a0�1)

[
4 2 1 1

2

]
A + 1 2

– When b0 is even, the situation gets unfortunately a bit worse:

M2 : (8a3 + 4a2 + 2a1 + a0)
(

b1 +
b0

2

)
= 8c4 + 4c3 + 2c2 + c1 +

c0

2

The ES cost for the second factor grows then to 3A + ( 1 2), so that the whole evaluation cost is 10A + 4( 1 2).

b1 b0

9′) v1 = b1 + b0 [ 1 1 ] A
10′) v2 = b1 − b0 [ 1 −1 ] A
11′) v3 = b1 + (b0�1)

[
1 1

2

]
A + 1 2

Obviously, if both a0 and b0 are even, it is therefore preferrable to aproach the first subcase.
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3.3 Interpolation phase

We can therefore consider a different matrix M ′ to be inverted, with the second line divided by 2.

M ′ =


1 0 0 0 0
8 4 2 1 1

2
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1


We propose for it the following inversion sequence, someway inspired by Zimmermann’s:

M ′
M ′

2+M ′
3

=⇒


1 0 0 0 0
9 3 3 0 3

2
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1


M ′

2/(3)

=⇒
M ′

3+M ′
4


1 0 0 0 0
3 1 1 0 1

2
2 0 2 0 2
1 1 1 1 1
0 0 0 0 1


M ′

2+( 1
2 )M ′

5

=⇒
M ′

2−(2)M ′
1


1 0 0 0 0
1 1 1 0 1
2 0 2 0 2
1 1 1 1 1
0 0 0 0 1


M ′

4−M ′
2

=⇒
M ′

3�(1)


1 0 0 0 0
1 1 1 0 1
1 0 1 0 1
0 0 0 1 0
0 0 0 0 1

M ′
2−M ′

3=⇒


1 0 0 0 0
0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
0 0 0 0 1


M ′

3−M ′
1

=⇒
M ′

3−M ′
5

I

Its computational cost is 8A + D(3) + S + 2( 1 2), smaller than costGMP . We could here avoid a shift because we
implicitly did it in the evaluation phase, but with no (small, when only b0 is even in the unbalanced case) extra cost.

We report below an implementation in gp-pari: the three possible ES’s and the common IS.

\\ Evaluation: Unbalanced case (a even). \\ Evaluation: Unbalanced case (b even).

a = a3*x^3 + a2*x^2 + a1*x + a0; b = b1*x + b0; a = a3*x^3 + a2*x^2 + a1*x + a0; b = b1*x + b0;

w0 = a2 + a0; w4 = b1 - b0; w0 = a2 + a0; w4 = b1 - b0;

w1 = a3 + a1; w1 = a3 + a1;

w3 = w1 - w0; w3 = w1 - w0;

w2 = w4*w3; \\ Evaluation in (-1) w2 = w4*w3; \\ Evaluation in (-1)

w3 = w1 + w0; w4 = b1 + b0; w3 = w1 + w0; w4 = b1 + b0;

w1 = w3*w4; \\ Evaluation in (1) w1 = w3*w4; \\ Evaluation in (1)

w0 = a2 + (a3<<1); w4 = w4 + b1; w0 = a2 + (a3<<1); w4 = b1 + (b0>>1);

w0 = a1 + (w0<<1); w0 = a1 + (w0<<1);

w0 = w0 + (a0>>1); w0 = a0 + (w0<<1);

w3 = w0*w4; \\ Evaluation in (2) divided by 2. w3 = w0*w4; \\ Evaluation in (2) divided by 2.

w0 = a0*b0; \\ Evaluation in (0) w0 = a0*b0; \\ Evaluation in (0)

w4 = a3*b1; \\ Evaluation in (1/0) w4 = a3*b1; \\ Evaluation in (1/0)

\\ Evaluation: Balanced case (a even) \\ Interpolation

a = a2*x^2 + a1*x + a0; b = b2*x^2 + b1*x + b0; w3 = w3 + w2; \\ A (9 3 3 0 3/2)

w3 = w3 / 3; \\ D (3 1 1 0 1/2)

w0 = a2 + a0; w4 = b2 + b0; w2 = w2 + w1; \\ A (2 0 2 0 2)

w1 = w0 - a1; w3 = w4 - b1; w3 = w3 + (w0>>1); \\ A + _1_2 (3 1 1 0 1)

w2 = w1*w3; \\ Evaluation in (-1) w3 = w3 - (w4<<1); \\ A + _1_2 (1 1 1 0 1)

w0 = w0 + a1; w4 = w4 + b1; w1 = w1 - w3; \\ A (0 0 0 1 0)

w1 = w0*w4; \\ Evaluation in (1) w2 = w2 >> 1; \\ S (1 0 1 0 1)

w0 = w0 + a2; w4 = w4 + b2; w3 = w3 - w2; \\ A (0 1 0 0 0)

w0 = w0 - (a0>>1); w4 = (w4<<1) - b0; w2 = w2 - w0; \\ A (1 0 1 0 0)

w3 = w0*w4; \\ Evaluation in (2) divided by 2. w2 = w2 - w4; \\ A (0 0 1 0 0)

w0 = a0*b0; \\ Evaluation in (0)

w4 = a2*b2; \\ Evaluation in (1/0) c = w4*x^4 + w3*x^3 + w2*x^2 + w1*x + w0;

We point out that one could equivalently use −2 as interpolation value instead of 2. This reduces the probability of
carry in M2 computation, but one has then to cope with more negative values.

4 Toom-3.5 with (at least) an even factor

When deg(c) = deg(a) + deg(b) = 5 we may apply the Toom-3.5 method, which is intrinsically unbalanced. The used
interpolation values are {∞,−2, 2, 1,−1, 0}. There are two versions: the slightly and the very unbalanced one, and for
each of them we have to consider two cases, depending on which among a0, b0 is even.
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4.1 Evaluation phase: the slightly unbalanced case

When a(x) = a3x
3 + a2x

2 + a1x + a0 and b(x) = b2x
2 + b1x + b0, if sa is available, the ES is reported below: the cost

for a is 8A + 4( 1 2), while the cost for b is 6A + 2( 1 2). The total cost is 14A + 6( 1 2).

a3 a2 a1 a0

1) u2 = a3 + a1 [ 1 0 1 0 ] A
2) u3 = a2 + a0 [ 0 1 0 1 ] A
3) u4 = u2 − u3 [ −1 1 −1 1 ] A
4) u5 = u2 + u3 [ 1 1 1 1 ] A
5) u1 = a0 + (a2�2) [ 0 4 0 1 ] A + 1 2
6) u3 = a1 + (a3�2) [ 4 0 1 0 ] A + 1 2
7) u2 = u1 − (u3�1) [ −8 4 −2 1 ] A + 1 2
8) u3 = u1 + (u3�1) [ 8 4 2 1 ] A + 1 2

b2 b1 b0

9) v5 = b2 + b0 [ 1 0 1 ] A
10) v4 = v5 − b1 [ 1 −1 1 ] A
11) v5 = v5 + b1 [ 1 1 1 ] A
12) v2 = v5 + b2 [ 2 1 1 ] A
13) v3 = (v2�1)− b0 [ 4 2 1 ] A + 1 2
14) v2 = v3 − (b1�2) [ 4 −2 1 ] A + 1 2

(3)

If sa is not available, the ES is reported below: the cost for a is 8A+3S, while the cost for b is 6A+2S (the proposed
ES for b is different from the one that could straightforwardly be obtained from the above one, in order to reduce carry
presence probability). The total cost is 14A + 5S.

a3 a2 a1 a0

1) - 4) as in eq. (3 )
5) u1 = a2�2 [ 0 4 0 0 ] S
6) u1 = u1 + a0 [ 0 4 0 1 ] A
7) u3 = a3�2 [ 4 0 0 0 ] S
8) u3 = u3 + a1 [ 4 0 1 0 ] A
9) u3 = u3�1 [ 8 0 2 0 ] S

10) u2 = u1 − u3 [ −8 4 −2 1 ] A
11) u3 = u1 + u3 [ 8 4 2 1 ] A

b2 b1 b0

12) v5 = b2 + b0 [ 1 0 1 ] A
13) v4 = v5 − b1 [ 1 −1 1 ] A
14) v5 = v5 + b1 [ 1 1 1 ] A
15) v2 = b2�2 [ 4 0 0 ] S
16) v2 = v2 + b0 [ 4 0 1 ] A
17) v1 = b1�1 [ 0 2 0 ] S
18) v3 = v2 + v1 [ 4 2 1 ] A
19) v2 = v2 − v1 [ 4 −2 1 ] A

(4)

– When a0 is even, dividing by 2 for the interpolation value x = 2 (and similarly for x = −2) we have

M ′2 :
(

4a3 + 2a2 + a1 +
a0

2

)
(4b2 + 2b1 + b0) = 16c5 + 8c4 + 4c3 + 2c2 + c1 +

c0

2

The ES for a changes, but the cost does not. We show it in both cases, when sa is and is not available, respectively.

a3 a2 a1 a0

1′) - 4′) as 1) - 4) in eq. (3 )
5′) u1 = a0 + (a2�2) [ 0 4 0 1 ] A + 1 2
6′) u3 = a1 + (a3�2) [ 4 0 1 0 ] A + 1 2
7′) u2 = (u1�1)− u3

[
−4 2 −1 1

2

]
A + 1 2

8′) u3 = (u1�1) + u3

[
4 2 1 1

2

]
A + 1 2

a3 a2 a1 a0

1′) - 4′) as 1) - 4) in eq. (4)
5′) u1 = a2�1 [ 0 2 0 0 ] S
6′) u2 = a0�1

[
0 0 0 1

2

]
S

7′) u1 = u1 + u2

[
0 2 0 1

2

]
A

8′) u3 = a3�2 [ 4 0 0 0 ] S
9′) u3 = u3 + a1 [ 4 0 1 0 ] A

10′) u2 = u1 − u3

[
−4 2 −1 1

2

]
A

11′) u3 = u1 + u3

[
4 2 1 1

2

]
A

(5)

– When b0 is even, dividing by 2 for the interpolation value x = 2 (and similarly for x = −2) we instead have

M ′2 : (8a3 + 4a2 + 2a1 + a0)
(

2b2 + b1 +
b0

2

)
= 16c5 + 8c4 + 4c3 + 2c2 + c1 +

c0

2

The ES for b changes, but the cost does not. We show both cases, when sa is and is not available, respectively.

b2 b1 b0

9′) v5 = b2 + b0 [ 1 0 1 ] A
10′) v4 = v2 − b1 [ 1 −1 1 ] A
11′) v5 = v2 + b1 [ 1 1 1 ] A
12′) v1 = v5 + b2 [ 2 1 1 ] A
13′) v1 = v5 − (b0�1) [ 2 1 1

2 ] A + 1 2
14′) v2 = v1 − (b1�1) [ 2 −1 1

2 ] A + 1 2

b2 b1 b0

12′) v5 = b2 + b0 [ 1 0 1 ] A
13′) v4 = v5 − b1 [ 1 −1 1 ] A
14′) v5 = v5 + b1 [ 1 1 1 ] A
15′) v1 = b2�1 [ 2 0 0 ] S
16′) v2 = b0�1

[
0 0 1

2

]
S

17′) v1 = v1 + v2

[
2 0 1

2

]
A

18′) v3 = v2 + b1

[
2 1 1

2

]
A

19′) v2 = v2 − b1

[
2 −1 1

2

]
A

(6)
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4.2 Evaluation phase: the very unbalanced case

When a(x) = a4x
4 + a3x

3 + a2x
2 + a1x + a0, b(x) = b1x + b0, if sa is available, the ES is reported below: the cost for

a is 10A + 5( 1 2), for b is 4A. The total cost is 14A + 5( 1 2).

a4 a3 a2 a1 a0

1) u2 = a3 + a1 [ 0 1 0 1 0 ] A
2) u1 = a4 + a0 [ 1 0 0 0 1 ] A
3) u1 = u1 + a2 [ 1 0 1 0 1 ] A
4) u4 = u1 − u2 [ 1 −1 1 −1 1 ] A
5) u5 = u1 + u2 [ 1 1 1 1 1 ] A
6) u1 = a1 + (a3�2) [ 0 4 0 1 0 ] A + 1 2
7) u2 = a2 + (a4�2) [ 4 0 1 0 0 ] A + 1 2
8) u3 = a0 + (u2�2) [ 16 0 4 0 1 ] A + 1 2
9) u2 = u3 − (u1�1) [ 16 −8 4 −2 1 ] A + 1 2

10) u3 = u3 + (u1�1) [ 16 8 4 2 1 ] A + 1 2

b1 b0

11) v4 = b0 − b1 [ −1 1 ] A
12) v5 = b0 + b1 [ 1 1 ] A
13) v2 = v4 − b1 [ −2 1 ] A
14) v3 = v5 + b1 [ 2 1 ] A

(7)

If sa is not available, the ES for a is reported below (the ES of b does not change): its cost is 10A + 4S. The total
cost is 14A + 4S.

a4 a3 a2 a1 a0

1) - 5) as in eq. (7 )
6) u1 = a3�2 [ 0 4 0 0 0 ] S
7) u1 = u1 + a1 [ 0 4 0 1 0 ] A
8) u1 = u1�1 [ 0 8 0 2 0 ] S
9) u2 = a4�2 [ 4 0 0 0 0 ] S

a4 a3 a2 a1 a0

10) u2 = u2 + a2 [ 4 0 1 0 0 ] A
11) u3 = u2�2 [ 16 0 4 0 0 ] S
12) u3 = u3 + a0 [ 16 0 4 0 1 ] A
13) u2 = u3 − u1 [ 16 −8 4 −2 1 ] A
14) u3 = u3 + u1 [ 16 8 4 2 1 ] A

(8)

– When a0 is even, dividing by 2 for the interpolation value x = 2 (and similarly for x = −2) we have

M ′2 :
(

8a4 + 4a3 + 2a2 + a1 +
a0

2

)
(2b1 + b0) = 16c5 + 8c4 + 4c3 + 2c2 + c1 +

c0

2

The ES for a changes, but the cost does not. We show both cases, when sa is and is not available, respectively. The
first 5 steps are as in equation (7).

a4 a3 a2 a1 a0

6′) u1 = a1 + (a3�2) [ 0 4 0 1 0 ] A + 1 2
7′) u2 = a2 + (a4�2) [ 4 0 1 0 0 ] A + 1 2
8′) u3 = a0 + (u2�2) [ 16 0 4 0 1 ] A + 1 2
9′) u2 = (u3�1)− u1

[
8 −4 2 −1 1

2

]
A + 1 2

10′) u3 = (u3�1) + u1

[
8 4 2 1 1

2

]
A + 1 2

a4 a3 a2 a1 a0

6′) u1 = a3�2 [ 0 4 0 0 0 ] S
7′) u1 = u1 + a1 [ 0 4 0 1 0 ] A
8′) u2 = a4�3 [ 8 0 0 0 0 ] S
9′) u3 = a2�1 [ 0 0 2 0 0 ] S

10′) u2 = u2 + u3 [ 8 0 2 0 0 ] A

11′) u3 = a0�1
[

0 0 0 0 1
2

]
S

12′) u3 = u2 + u3

[
8 0 2 0 1

2

]
A

13′) u2 = u3 − u1

[
8 −4 2 −1 1

2

]
A

14′) u3 = u3 + u1

[
8 4 2 1 1

2

]
A

(9)

– When b0 is even, dividing by 2 for the interpolation value x = 2 (and similarly for x = −2) we instead have

M ′2 : (16a4 + 8a3 + 4a2 + 2a1 + a0)
(

b1 +
b0

2

)
= 16c5 + 8c4 + 4c3 + 2c2 + c1 +

c0

2

In this case the situation gets unfortunately a bit worse: The new (partial) ES cost for the second factor grows to
4A + ( 1 2) is sa is available, or 4A + S if it is not, respectively.

b1 b0

12′) v4 = b0 − b1 [ −1 1 ] A
13′) v5 = b0 + b1 [ 1 1 ] A
14′) v2 = (b0�1)− b1

[
−1 1

2

]
A + 1 2

15′) v3 = b0 − v2

[
1 1

2

]
A

b1 b0

12′) v4 = b0�1 [ 0 1
2 ] S

13′) v2 = v4 − b1

[
−1 1

2

]
A

14′) v3 = v4 + b1

[
1 1

2

]
A

15′) v4 = b0 − b1 [ −1 1 ] A
16′) v5 = b0 + b1 [ 1 1 ] A

(10)

The total ES cost amounts then to 14A + 6( 1 2) and 14A + 5S, respectively.
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4.3 Interpolation phase

The IS proposed in [1] for the general case has a cost of 12A + 2S + D(6) + D(12) + 2( 1 2). Strictly following the EMI
scheme, we can manage the IS so that the cost becomes one of the following – when sa is available or not, respectively.
Note that at least one division is now by a different constant.1

cost′ = 12A + S + D(3) + D(12) + 3( 1 2) ; cost′′ = 12A + 4S + 2D(3)

The new M matrix resulting from the evaluation values {∞,−2, 2,−1, 1, 0} with second and third line divided by 2 is

M =


1 0 0 0 0 0

−16 8 −4 2 −1 1
2

16 8 4 2 1 1
2

−1 1 −1 1 −1 1
1 1 1 1 1 1
0 0 0 0 0 1


If sa is available, the proposed IS is:

M
M2+M3

=⇒
M4+M5


1 0 0 0 0 0
0 16 0 4 0 1

16 8 4 2 1 1
2

0 2 0 2 0 2
1 1 1 1 1 1
0 0 0 0 0 1


M3−( 1

2 )M2

=⇒
M4�1


1 0 0 0 0 0
0 16 0 4 0 1

16 0 4 0 1 0
0 1 0 1 0 1
1 1 1 1 1 1
0 0 0 0 0 1


M2−M6

=⇒
M5−M4


1 0 0 0 0 0
0 16 0 4 0 0

16 0 4 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 0 0 0 0 1


M3−M5

=⇒
M4−M6


1 0 0 0 0 0
0 16 0 4 0 0

15 0 3 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 1



M2−(4)M4

=⇒
M3/(3)


1 0 0 0 0 0
0 12 0 0 0 0
5 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 1


M2/(12)

=⇒
M3−(4)M1


1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 0 0 0 0 1


M4−M2

=⇒
M5−M3


1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


M3−M1

=⇒ I

If sa is not available, the IS is slightly different, and a small “trick” has to be used in order not to use any extra
temporary variable: evaluation and interpolation phases have to be interlaced someway. We don’t report explicitly this
second IS: it can be easily deduced from the code reported in appendix A or B.

If we instead mix a bit IS and ES we can also work as
follows: rewrite ES so that the interpolation matrix is the
shown aside M : that is, simply reorganize the ES in order
to put the evaluation in −2 (divided by 2) in M6, where
c0 = a0b0 – the evaluation in 0 – should be, and do not
compute c0. Note that M2 line remains for now undefined.
The IS (when sa is available) becomes then the following
one, otherwise the above considerations apply:

M =


1 0 0 0 0 0

〈not computed value〉
16 8 4 2 1 1

2
−1 1 −1 1 −1 1

1 1 1 1 1 1
−16 8 −4 2 −1 1

2



M
M2=M3+M6

=⇒
M5−M4


1 0 0 0 0 0
0 16 0 4 0 1

16 8 4 2 1 1
2

−1 1 −1 1 −1 1
2 0 2 0 2 0

−16 8 −4 2 −1 1
2


M3−M6

=⇒
M6=a0b0


1 0 0 0 0 0
0 16 0 4 0 1

32 0 8 0 2 0
−1 1 −1 1 −1 1

2 0 2 0 2 0
0 0 0 0 0 1

 =⇒ · · · 〈as in [2]〉 · · · =⇒ I

The cost becomes one of the following – when sa is available or not, respectively. Note that at least one division is now
by a different constant.

cost′ = 12A + S + D(6) + D(12) + 2( 1 2) ; cost′′ = 12A + 3S + D(3) + D(6)

We don’t provide the code in this case, as it can be easily deduced from the one relative to the precedent case.
1 As GMP has an optimized function to divide a long integer by 3, it can be directly used, gaining efficiency.
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5 Some savings in Toom-4.5 and Toom-5

Good IS’s for Toom-4.5 and Toom-5 were introduced in [2]. They were not proven to be optimal (in the considered
model): because of their too big dimension it was impossible to find the optimal IS by exhaustive search. By slightly
changing the model (in particular, “interlacing” ES and IS), it is possible to avoid one 1 2 (or a shift) for Toom-4.5
and two for Toom-5, for whatever a, b.

5.1 Saving in Toom-4.5

It uses
{
∞,−1,−2, 1

2 , 1, 2,− 1
2 , 0
}

as interpolation points (with lines corresponding to ± 1
2 opportunely multiplied by

27). The matrix is

M =



1 0 0 0 0 0 0 0
−1 1 −1 1 −1 1 −1 1

−128 64 −32 16 −8 4 −2 1
1 2 4 8 16 32 64 128
1 1 1 1 1 1 1 1

128 64 32 16 8 4 2 1
1 −2 4 −8 16 −32 64 −128
0 0 0 0 0 0 0 1


The proposed IS contains the “decoupling” instructions for lines 3 and 6, related to values −2 and 2: the partial cost
of these two operations is 2A + 1 2.

M3 = M3 −M6 ; ( −256 0 −64 0 −16 0 −4 0 )
M6 = (M6 � 1)−M3 ; ( 0 128 0 32 0 8 0 2 )

By slightly mixing evaluation and interpolation phases it is possible to reduce this cost to 2A, as follows:

– First perform the ES for Toom-4.5 giving M , but mod-
ified such in a way that the obtained interpolation ma-
trix is the aside shown M ′: that is, simply reorganize the
ES in order to put the evaluation in −2 in M8, where
c0 = a0b0 – the evaluation in 0 – should be, and do not
compute c0. Note that M3 line remains for now unde-
fined.

M ′ =



1 0 0 0 0 0 0 0
−1 1 −1 1 −1 1 −1 1

〈not computed value〉
1 2 4 8 16 32 64 128
1 1 1 1 1 1 1 1

128 64 32 16 8 4 2 1
1 −2 4 −8 16 −32 64 −128

−128 64 −32 16 −8 4 −2 1


– Then decouple and complete the ES

M3 = M6 −M8 ; ( 256 0 64 0 16 0 4 0 )
M6 = M6 + M8 ; ( 0 128 0 32 0 8 0 2 )
M8 = a0b0 ; ( 0 0 0 0 0 0 0 1 )

– Finally complete the IS following [2].

5.2 Saving in Toom-5

The corresponding matrix M is shown below: the IS proposed in [2] contained two decouplings: for values ±2 (lines 2
and 5) and ± 1

2 (lines 3 and 8). In this case mixing ES and IS results in a saving of 2( 1 2).

M =



1 0 0 0 0 0 0 0 0
256 −128 64 −32 16 −8 4 −2 1

1 2 4 8 16 32 64 128 256
48 47 46 45 256 64 16 4 1

256 128 64 32 16 8 4 2 1
1 −1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1
1 −2 4 −8 16 −32 64 −128 256
0 0 0 0 0 0 0 0 1


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– First perform the ES for Toom-5 giving M , but modified such
in a way that the obtained interpolation matrix is the aside
shown M ′: that is, simply reorganize the ES in order to put
the evaluation in −2 in M1, the evaluation in − 1

2 (multiplied
by 28) in M9, and do not compute c0 and c9. Note that M2

and M8 lines remain for now undefined.

– Then decouple and adapt some IS steps to the new situation,
as it must be slightly modified. The IS is a bit involved, we
report gp-pari code for it:

M ′ =



256 −128 64 −32 16 −8 4 −2 1
〈not computed value〉

1 2 4 8 16 32 64 128 256
48 47 46 45 256 64 16 4 1

256 128 64 32 16 8 4 2 1
1 −1 1 −1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1

〈not computed value〉
1 −2 4 −8 16 −32 64 −128 256


\\ Evaluation of W0,...,W8 such that W1 = W1 + W7;

W0 <-- Evaluation in (-1/2) times 2^8 W4 = W4 + W6;

W1 <-- Still not inizialized W1 = W1 - (80*W3);

W2 <-- Evaluation in (1) W6 = W6 - (510*W0);

W3 <-- Evaluation in (-1) W5 = W5 - W7;

W4 <-- Evaluation in (2) W6 = 3*W6 + W4;

W5 <-- Evaluation in (1/2) times 2^8 W1 = W1/180;

W7 <-- Still not inizialized W4 = W4 + (378*W2);

W8 <-- Evaluation in (-2) W7 = W7>>2;

W3 = W3 - W7;

\\ Interpolation (and evaluation completion) W4 = W4 /(-72);

W7 = W4 - W8; W6 = W6 /(-360);

W4 = W4 + W8; W7 = W7 - W1;

W1 = W6 - W0; W2 = W2 - W6;

W6 = W6 + W0; W5 = W5 - (W4<<8);

W8 = Evaluation in (1/0); W6 = W6 - W4;

W0 = Evaluation in (0); W5 = W5 - (W6<<12);

W2 = W2 + W3; W5 = W5 - (W2<<4);

W6 = W6 - W2; W5 = W5 + (W3<<8);

W2 = W2 >> 1; W3 = W3 + W7;

W3 = W2 - W3; W7 = (W7*180) + W5;

W5 = W5 - W0; W7 = W7/11340;

W5 = W5 - (W8<<16); W5 = W5 + (720*W3);

W4 = W4 - (W2<<9); W5 = W5/(-2160);

W2 = W2 - W8; W3 = W3 - W5;

W2 = W2 - W0; W1 = W1 - W7;

6 Conclusions

We showed how some Toom-Cook methods can be modified when one factor is even, permitting some savings. Lower-
level implementations should be realized in order to understand the real gain over the classical methods. Possible
optimizations of the interpolation phase of Toom-4.5 and Toom-5 were also suggested.
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A Toom-3.5 code when a0 is even

1. Slightly unbalanced case : We propose two complete procedures: when sa is or is not available. To avoid the
use of any extra temporaries, the version without sa is sensibly different: evaluation and interpolation sequence are
mixed. The values for c0 is computed during the IS, as soon it is needed, so that the variable that will contain it can
meanwhile be used as a temporary one. In the code presented when sa is available we suppose that 2( 1 2) 6 S. If

it is not the case, one should have
W0 = W0>>1;
W4 = W0 + W3;
W0 = W0 - W3;

instead of W4 = (W0>>1) + W3;
W0 = (W0>>1) - W3;

With sa Without sa

a = a3*x^3 + a2*x^2 + a1*x + a0; a = a3*x^3 + a2*x^2 + a1*x + a0;

b = b2*x^2 + b1*x + b0; b = b2*x^2 + b1*x + b0;

\\\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\\ Evaluation

W0 = a0 + a2; W1 = b0 + b2; W0 = a0 + a2; W1 = b0 + b2;

W4 = a1 + a3; W5 = W1 - b1; W4 = a1 + a3; W5 = W1 - b1;

W3 = W0 - W4; W3 = W0 - W4;

W2 = W3*W5; \\ Evaluation in (-1) W2 = W3*W5; \\ Evaluation in (-1)

W3 = W0 + W4; W5 = W1 + b1; W3 = W0 + W4; W5 = W1 + b1;

W1 = W3*W5; \\ Evaluation in (1) W1 = W3*W5; \\ Evaluation in (1)

W0 = a0 + (a2<<2); W5 = W5 + b2; W0 = a2<<1; W5 = W5 + b2;

W3 = a1 + (a3<<2); W5 = (W5<<1) - b0; W3 = a0>>1; W5 = W5<<1;

W4 = (W0>>1) + W3; W0 = W0 + W3; W5 = W5 - b0;

W0 = (W0>>1) - W3; W3 = a3<<2;

W3 = W4*W5; \\ Evaluation in (2) divided by 2. W3 = W3 + a1;

W5 = W5 - (b1<<2); W4 = W0 + W3;

W4 = W0*W5; \\ Evaluation in (-2) divided by 2. W0 = W0 - W3;

W0 = a0*b0; \\ Evaluation in (0) W3 = W4*W5; \\ Evaluation in (2) divided by 2.

W5 = a3*b2; \\ Evaluation in (1/0) W4 = b1<<2;

W5 = W5 - W4;

\\\\\\\\\\\\ Interpolation W4 = W0*W5; \\ Evaluation in (-2) divided by 2.

W4 = W4 + W3; W5 = a3*b2; \\ Evaluation in (1/0)

W2 = W2 + W1;

W3 = W3 - (W4>>1); \\\\\\\\\\\\ Interpolation

W2 = W2>>1; W4 = W4 + W3;

W4 = W4 - W0; W2 = W2 + W1;

W1 = W1 - W2; W0 = W4>>1;

W3 = W3 - W1; W3 = W3 - W0;

W2 = W2 - W0; W2 = W2>>1;

W4 = W4 - (W2<<2); W1 = W1 - W2;

W3 = W3/3; W3 = W3 - W1;

W4 = W4/12; W3 = W3/3;

W3 = W3 - (W5<<2); W0 = W5<<2;

W1 = W1 - W3; W3 = W3 - W0;

W2 = W2 - W4; W1 = W1 - W3;

W3 = W3 - W5; W3 = W3 - W5;

W0 = a0*b0; \\ Evaluation in 0.

c = W5*x^5 + W4*x^4 + W3*x^3 + W2*x^2 + W1*x + W0; W4 = W4 - W2;

W4 = W4/3;

W2 = W2 - W0;

W4 = W4 - W2;

W4 = W4>>2;

W2 = W2 - W4;

c = W5*x^5 + W4*x^4 + W3*x^3 + W2*x^2 + W1*x + W0;
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2. Very unbalanced case : We propose just the evaluation phases when sa is (complete ES) or is not (not complete
ES) available. The interpolation (pure or mixed) and the final reconstruction are the same as above, respectively.

With sa Without sa

a = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0; a = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0;

b = b1*x + b0; b = b1*x + b0;

\\\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\\ Evaluation

W0 = a0 + a4; W0 = a0 + a4;

W0 = W0 + a2; W0 = W0 + a2;

W4 = a1 + a3; W4 = a1 + a3;

W3 = W0 - W4; W5 = b0 - b1; W3 = W0 - W4; W5 = b0 - b1;

W2 = W3*W5; \\ Evaluation in (-1) W2 = W3*W5; \\ Evaluation in (-1)

W3 = W0 + W4; W3 = W0 + W4;

W1 = a2 + (a4<<2); W1 = a4<<2;

W1 = a0 + (W1<<2); W1 = W1 + a2;

W4 = a1 + (a3<<2); W1 = W1<<2;

W0 = (W1>>1) + W4; W1 = W1 + a0;

W1 = (W1>>1) - W4; W5 = W5 - b1; W4 = a3<<2;

W4 = W1*W5; \\ Evaluation in (-2) divided by 2. W4 = W4 + a1;

W5 = b0 + b1; W1 = W1>>1;

W1 = W3*W5; \\ Evaluation in (1) W0 = W1 + W4;

W5 = W5 + b1; W1 = W1 - W4; W5 = W5 - b1;

W3 = W0*W5; \\ Evaluation in (2) divided by 2. W4 = W1*W5; \\ Evaluation in (-2) divided by 2.

W0 = a0*b0; \\ Evaluation in (0) W5 = b0 + b1;

W5 = a4*b1; \\ Evaluation in (1/0) W1 = W3*W5; \\ Evaluation in (1)

W5 = W5 + b1;

W3 = W0*W5; \\ Evaluation in (2) divided by 2.

W5 = a4*b1; \\ Evaluation in (1/0)

B Toom-3.5 code when b0 is even

1. Slightly unbalanced case : We propose just the evaluation phases when sa is (complete ES) or is not (not
complete ES) available. The interpolation (pure or mixed) and the final reconstruction are the same as in the case
when a0 is even, respectively.

With sa Without sa

a = a3*x^3 + a2*x^2 + a1*x + a0; a = a3*x^3 + a2*x^2 + a1*x + a0;

b = b2*x^2 + b1*x + b0; b = b2*x^2 + b1*x + b0;

\\\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\\ Evaluation

W0 = a0 + a2; W1 = b0 + b2; W0 = a0 + a2; W1 = b0 + b2;

W4 = a1 + a3; W5 = W1 - b1; W4 = a1 + a3; W5 = W1 - b1;

W3 = W0 - W4; W3 = W0 - W4;

W2 = W3*W5; \\ Evaluation in (-1) W2 = W3*W5; \\ Evaluation in (-1)

W3 = W0 + W4; W5 = W1 + b1; W3 = W0 + W4; W5 = W1 + b1;

W1 = W3*W5; \\ Evaluation in (1) W1 = W3*W5; \\ Evaluation in (1)

W0 = a0 + (a2<<2); W5 = W5 + b2; W0 = a2<<2; W5 = W5 + b2;

W3 = a1 + (a3<<2); W5 = W5 - (b0>>1); W0 = W0 + a0; W4 = b0>>1;

W4 = W0 + (W3<<1); W3 = a3<<2; W5 = W5 - W4;

W0 = W0 - (W3<<1); W3 = W3 + a1;

W3 = W4*W5; \\ Evaluation in (2) divided by 2. W3 = W3<<1;

W5 = W5 - (b1<<1); W4 = W0 + W3;

W4 = W0*W5; \\ Evaluation in (-2) divided by 2 W0 = W0 - W3;

W0 = a0*b0; \\ Evaluation in (0) W3 = W4*W5; \\ Evaluation in (2) divided by 2.

W5 = a3*b2; \\ Evaluation in (1/0) W4 = b1<<1;

W5 = W5 - W4;

W4 = W0*W5; \\ Evaluation in (-2) divided by 2.

W5 = a3*b2; \\ Evaluation in (1/0)
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2. Very unbalanced case : We propose just the evaluation phases when sa is (complete ES) or is not (not complete
ES) available. The interpolation (pure or mixed) and the final reconstruction are the same as in the case when a0

is, respectively.

With sa Without sa

a = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0; a = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0;

b = b1*x + b0; b = b1*x + b0;

\\\\\\\\\\\\\\ Evaluation \\\\\\\\\\\\\\ Evaluation

W0 = a0 + a4; W0 = a0 + a4;

W0 = W0 + a2; W0 = W0 + a2;

W5 = a1 + a3; W4 = a1 + a3;

W3 = W0 - W5; W4 = b0 - b1; W3 = W0 - W4; W5 = b0 - b1;

W2 = W3*W4; \\ Evaluation in (-1) W2 = W3*W5; \\ Evaluation in (-1)

W3 = W0 + W5; W4 = b0 + b1; W3 = W0 + W4; W5 = b0 + b1;

W1 = W3*W4; \\ Evaluation in (1) W1 = W3*W5; \\ Evaluation in (1)

W0 = a2 + (a4<<2); W0 = a4<<2;

W0 = a0 + (W0<<2); W0 = W0 + a2;

W3 = a1 + (a3<<2); W0 = W0<<2;

W0 = W0 + a0;

W4 = W0 + (W3<<1); W3 = a3<<2;

W0 = W0 - (W3<<1); W5 = (b0>>1) + b1; W3 = W3 + a1;

W3 = W4*W5; \\ Evaluation in (2) divided by 2. W3 = W3<<1;

W5 = b0 - W5; W4 = W0 + W3; W5 = b0>>1;

W4 = W0*W5; \\ Evaluation in (-2) divided by 2. W0 = W0 - W3; W5 = W5 + b1;

W3 = W4*W5; \\ Evaluation in (2) divided by 2.

W0 = a0*b0; \\ Evaluation in (0) W5 = b0 - W5;

W5 = a4*b1; \\ Evaluation in (1/0) W4 = W0*W5; \\ Evaluation in (-2) divided by 2.

W5 = a4*b1; \\ Evaluation in (1/O).
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