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Polynomial multiplication in GF(2)[x ]
The problem

We start from two dense binary polynomials

u, v ∈ GF(2)[x ]

and we need the product

w = u · v ∈ GF(2)[x ]

Assume monomial base.

u = xdu . . . 0 · x6+ 1 · x5+ 1 · x4+ 0 · x3+ 1 · x2+ 1 · x + 1
v = xdv . . . 1 · x6+ 0 · x5+ 0 · x4+ 0 · x3+ 1 · x2+ 1 · x + 0

 w = xdu+dv . . . 1 · x6+ 1 · x5+ 1 · x4+ 0 · x3+ 0 · x2+ 1 · x + 0
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Polynomial multiplication in GF(2)[x ]
The problem

We start from two dense binary polynomials

u, v ∈ GF(2)[x ]

and we need the product

w = u · v ∈ GF(2)[x ]

Compact dense representation, each bit store a coefficient.

u = [1 . . . 0110111]
v = [1 . . . 1000110]

 w = [1 . . . . . . . . . . . . 1110010]
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Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

Näıve O(d2)

Karatsuba (Toom-2) (1962) O(d log2 3)

Toom-Cook-k (1963) O(d logk 2k−1)

Schönhage-FFT (1977) O(d log d log log d)

Each one has a different complexity, and a different range where it
is the fastest. see thresholds

Some authors say: “Toom’s strategy is impossible for GF(2)[x ]”.
I say:“It is possible and practical”
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Recall on Toom-k algorithm
5 phases

1 Splitting

2 Evaluation

3 Multiplication

4 Interpolation

5 Recomposition

Phase 1, choose a base, homogenise see unbalanced

Choose a base Y = xb suitable to represent operands with k parts.
GF(2)[x ]  GF(2)[x ] [y , z ]
u = [. . . . . . . . .]  [. . .] · y2+ [. . .] · yz +[. . .] · z2 = u

v = [. . . . . . . . .]  [. . .] · y2+ [. . .] · yz +[. . .] · z2 = v

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]



A way to Toom multiplication for binary polynomials
Searching for the optimal Toom-3 in GF(2)[x]

Conclusions

Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Recall on Toom-k algorithm
5 phases

1 Splitting: choose a base, homogenise

2 Evaluation

3 Multiplication

4 Interpolation

5 Recomposition

Phase 2, some linear algebra

Evaluate polynomials u, v in 2k − 1 different points
(αi , βi ) ∈ GF(2)[x ]2, not just in GF(2)!
Obtain this multiplying a (non square) Vandermonde matrix by the
vector of coefficients.
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Recall on Toom-k algorithm
5 phases

1 Splitting: choose a base, homogenise

2 Evaluation: 2× matrix-vector multiplication

3 Multiplication

4 Interpolation

5 Recomposition

Phase 3, recursive application see unbalanced

Compute evaluation of the product by multiplying evaluations.
w(αi , βi ) = u(αi , βi ) · v(αi , βi )
Degree k − 1 × degree k − 1  degree 2k − 2.
k parts × k parts  2k − 1 parts. ⇒ 2k − 1 multiplications.
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Recall on Toom-k algorithm
5 phases

1 Splitting: choose a base, homogenise

2 Evaluation: 2× matrix-vector multiplication

3 Multiplication: (2k − 1)× recursive application

4 Interpolation

5 Recomposition

Phase 4, some more linear algebra

Interpolate to obtain coefficient of the product polynomial.

Obtain this multiplying the inverse of a (square) Vandermonde
matrix by the vector of evaluations.
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Recall on Toom-k algorithm
5 phases

1 Splitting: choose a base, homogenise

2 Evaluation: 2× matrix-vector multiplication

3 Multiplication: (2k − 1)× recursive application

4 Interpolation: inverse matrix-vector multiplication

5 Recomposition

Phase 5, last details

We computed the product in GF(2)[x ] [y , z ].
Go back to GF(2)[x ] with an evaluation:
u · v = u(Y , 1)v(Y , 1) = w(Y , 1) = w ∈ GF(2)[x ]
where Y , is the “base” chosen during phase 1.
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Recall on Toom-k algorithm
5 phases

1 Splitting: choose a base, homogenise

2 Evaluation: 2× matrix-vector multiplication

3 Multiplication: (2k − 1)× recursive application

4 Interpolation: inverse matrix-vector multiplication

5 Recomposition: shift and add.

Phase 2 and 4, are critical

Splitting order k gives number (2k − 1) of multiplication in
phase 3, and asymptotic behaviour O(d logk 2k−1). Rigidly.
The choice of evaluation/interpolation points and operation
sequences for phases 2 and 4 gives the hidden constant.
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Operations we count on for linear algebra

Basic on long operands (cost)

Addition(Subtraction) (add) linear

Mul/div by xn (optimised with shift) (shift) linear

Multiplication by a “small” operand (Smul) linear

Exact division by a “small” operand (Sdiv) linear

“small” actually means fixed: asymptotically small. Typically fits in 1 BYTE.

Composite

linear combination li ← (cj · lj + ck · lk)/di , may be i = j
cj , ck , di are “small” constants.
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Evaluation is Matrix-vector multiplication

After splitting, operands are quadratic polynomials

u(y , z)=U2y
2+U1yz +U0z

2, U0,U1,U2 ∈ GF(2)[x ], deg(Ui ) < b

Evaluate at 5 points: {(0, 1), (1, 1), (x , 1), (x + 1, 1), (1, 0)}
u(0, 1)
u(1, 1)
u(x , 1)

u(x + 1, 1)
u(1, 0)

=


1 0 0
1 1 1
1 x x2

1 x + 1 x2 + 1
0 0 1


(

U0

U1

U2

)
=


U0

U0 + U1 + U2

U0 + (x)U1 + (x2)U2

U0 + (x + 1)U1 + (x2 + 1)U2

U2


A näıve implementation cost: 6× add + 2× shift + 2× Smul.
First and last evaluations are trivial.
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Evaluation is Matrix-vector multiplication

After splitting, operands are quadratic polynomials

u(y , z)=U2y
2+U1yz +U0z

2, U0,U1,U2 ∈ GF(2)[x ], deg(Ui ) < b

Evaluate at 5 points: {(0, 1), (1, 1), (x , 1), (x + 1, 1), (1, 0)}
u(0, 1)
u(1, 1)
u(x , 1)

u(x + 1, 1)
u(1, 0)

=


1 0 0
1 1 1
1 x x2

1 x + 1 x2 + 1
0 0 1


(

U0

U1

U2

)
=


U0

U0 + U1 + U2

U0 + (x)U1 + (x2)U2

U0 + (x + 1)U1 + (x2 + 1)U2

U2


A näıve implementation cost: 8× add + 4× shift.
First and last evaluations are trivial.
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Search a sequence of operations on matrix lines
Start from the “empty” matrix, search a path to the goal

No temporaries: in-place operations.0BBBBBB@

l−1 1 0 0
l−2 0 1 0
l−3 0 0 1

l1 0 0 0
l2 0 0 0
l3 0 0 0

1CCCCCCA
l1←l−1+l−2
 

0BBBBBB@

l−1 1 0 0
l−2 0 1 0
l−3 0 0 1

l1 1 1 0
l2 0 0 0
l3 0 0 0

1CCCCCCA
l1←(x)l−2+(x2)l−3

↓
. . .

...0BBBBBB@

l−1 1 0 0
l−2 0 1 0
l−3 0 0 1

l1 0 x x2

l2 0 0 0
l3 0 0 0

1CCCCCCA · · ·

0BBBBBB@

1 0 0
0 1 0
0 0 1

1 1 1
1 x x2

1 x + 1 x2 + 1

1CCCCCCA
Order of nontrivial values doesn’t matter.
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Paths with different costs
even with same number of steps

Here two partial paths are shown.0BBBBBB@

l−1 1 0 0
l−2 0 1 0
l−3 0 0 1

l1 1 1 1
l2 0 0 0
l3 0 0 0

1CCCCCCA
l2←l−2+(x+1)·l−3

 

0BBBBBB@

l−1 1 0 0
l−2 0 1 0
l−3 0 0 1

l1 1 1 1
l2 0 1 x + 1
l3 0 0 0

1CCCCCCA
l2←(x)l−2+(x2)l−3

↓
l2←(x+1)l2+l1

↓0BBBBBB@

l−1 1 0 0
l−2 0 1 0
l−3 0 0 1

l1 1 1 1
l2 0 x x2

l3 0 0 0

1CCCCCCA
l2←l2+l1 

0BBBBBB@

1 0 0
0 1 0
0 0 1

1 1 1
1 x + 1 x2 + 1
0 0 0

1CCCCCCA
Initial and final matrices coincide, but the cost is different.
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Optimal evaluation sequence
The power of recycling

Path on the graph. . .
l−1 1 0 0
l−2 0 1 0
l−3 0 0 1

l1 0 0 0
l2 0 0 0
l3 0 0 0

 l1←l−1+l−2+l−3
 

l3←(x)l−2+(x2)l−3


1 0 0
0 1 0
0 0 1

1 1 1
0 0 0
0 x x2

l2←l3+l−1
 

l3←l3+l1


1 0 0
0 1 0
0 0 1

1 1 1
1 x x2

1 x + 1 x2 + 1


Total cost: 5× add + 2× shift
Näıve was: 8× add + 4× shift

. . . immediately translates to temporary-less evaluation sequence

L1 = U0 + U1 + U2; L3 = (x) · U2 + (x2) · U3;
L2 = L3 + U0; L3 = L3 + L1
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After recursive multiplication w(α, β) = u(α, β)v(α, β)
w(0, 1)
w(1, 1)
w(x , 1)

w(x + 1, 1)
w(1, 0)

=


1 0 0 0 0
1 1 1 1 1
1 x x2 x3 x4

1 x + 1 x2 + 1 (x + 1)3 x4 + 1
0 0 0 0 1




W0

W1

W2

W3

W4


Graph search for interpolation too [ISSAC2007].
Cost found: 9× add + 1× shift + 1× Smul + 2× Sdiv
Multiplication by x3 + 1, exact divisions by x + 1, x2 + x . see

A Toom-3 in GF(2)[x ] without divisions is not possible.

Final recomposition, doubly length coefficients

[. . .W 3 . . .][. . .W 1 . . .] ⊕
[. . .W 4 . . .][. . .W 2 . . .][. . .W 0 . . .] = w
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Thresholds for NTL-based implementations

Range where each algorithm is the fastest

Algorithm operand degree (bits) asymptotic

Näıve < 190 O(d2)
Karatsuba 190 . . . 360 O(d log2 3)
Toom-3 360 . . . 8,000 O(d log3 5)
Toom-4 8,000 . . . 15,000 O(d log4 7)
Schönhage-FFT 15,000 < O(d log d log log d)

Those values highly depend on implementation, architecture. . .

Algorithms in blue where implemented by Paul Zimmermann
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What else you can find on the paper?
Only about 10 pages of the paper reported in this presentation

Details skipped during presentation

Heuristics for graph search.

Operands with very different size Unbalanced

Bivariate (and sketches on multivariate)

Results for characteristic 0 (Z [x ] and Z, + squaring)

The title of the paper is much longer!

Towards Optimal Toom-Cook Multiplication for Univariate and
Multivariate Polynomials in Characteristic 2 and 0 Download
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That’s all !

Thank you very much for your kind attention

Questions?

Presentation will be available on the web:
http://bodrato.it/papers/#WAIFI2007,

released under a CreativeCommons BY-NC-SA licence.

Full paper too is available on web.
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back to index
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Exact division
detailed only for D = xn + 1 ∈ GF(2)[x ]

We start from an element GF(2)[x ] 3 a = qD, whose degree is
deg(a) = d + n. We want the quotient q. Compute with 2kn 6 d .

q ≡ a · (1 + xn) · (1 + x2n) · · · (1 + x2kn) (mod xd+1)

Division can be performed limb by limb starting from less
significant one, obtaining linear complexity.

Division limb by limb obtain linear complexity

for i = 0 . . . d/w
ai ← ai · D−1 (mod xw )
ai+1 ← ai+1 − ai ·D

xw = ai+1 − ai >> (w − n)

Thanks to Jörg Arndt for suggesting a clean description
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Splitting for unbalanced operands

Toom-2.5

Degree 2 × degree 1  degree 3.
3 parts × 2 parts  4 parts.

GF(2)[x ]  GF(2)[x ] [y , z ]
u = [. . . . . . . . .]  [. . .] · y2+ [. . .] · yz +[. . .] · z2 = u

v = [. . . . . .]  [. . .] · y +[. . .] · z = v

Unbalanced Toom-3 back to balanced

Degree 3 × degree 1  degree 4.
4 parts × 2 parts  5 parts.
GF(2)[x ]  GF(2)[x ] [y , z ]
[. . . . . . . . . . . .]  [. . .] · y3 + [. . .] · y2z+ [. . .] · yz2 +[. . .] · z3

[. . . . . .]  [. . .] · y +[. . .] · z
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How to choose evaluation/interpolation points

Points chosen for the results gives small degree increase and small
cost for ES/IS. Different choices are possible.

An anonymous referee and Richard Brent suggested the use of xw ,
xw + 1 for w -bits CPU. ES and IS basically remain the same.

When working on GF(2n)[x ] we are working on GF(2)[x ]/p [X ], so
we have to choose the use of x , x + 1 or X ,X + 1, test for any
particular implementation.
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