Towards optimal Toom-Cook-3 multiplication

for univariate binary polynomials

Marco Bodrato

Centro “Vito Volterra” — Universita di Roma “Tor Vergata” — Italy

WAIFI 2007 - June 21"

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

© A way to Toom multiplication for binary polynomials
@ Multiplication algorithms and complexity
@ Toom-Cook algorithm for polynomials, revisited
@ Operations and costs

@ Searching for the optimal Toom-3 in GF(2)[x]
@ Naive evaluation
@ Proposed graph search
@ The algorithm found

© Conclusions
@ Timings
@ More results
@ Thanks

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplicatio orithms and complexity

Toom-Cook ithm for polynomials, revisited
Operations a osts

Polynomial multiplication in GF(2)[x]

The problem

We start from two dense binary polynomials

u,v € GF(2)[x]

and we need the product

w=u-v e GF(2)[x]

u= x% . 0-x04+1-x54+1-x*+0-x34+41-x24+1-x+1
v = X . 1-x°4+0-x°+0-x*+0-x3+1-x241-x+0
mow= x%td 1.x041.x54+1-x*4+0-x340-x24+1-x+0

Marco Bodrato (0xC1A000B0)

Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Polynomial multiplication in GF(2)[x]
The problem

We start from two dense binary polynomials
u,v € GF(2)[x]
and we need the product

w=u-v e GF(2)[x]

Compact dense representation, each bit store a coefficient.

u= [1...0110111]
v = [1...1000110]
mw= [l 1110010]

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

@ Naive O(dz)

Each one has a different complexity, and a different range where it
is the fastest.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.
o Naive 0(d?)
e Karatsuba (Toom-2) (1962) O(d'823)

Each one has a different complexity, and a different range where it
is the fastest.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

o Naive 0(d?)
e Karatsuba (Toom-2) (1962) O(d'"e23)
@ Schonhage-FFT (1977) O(dlog dloglog d)

Each one has a different complexity, and a different range where it
is the fastest.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

e Naive 0(d?)
o Karatsuba (Toom-2) (1962) O(d'oe23)
@ Toom-Cook-k (1963) O(d'osx2k—1)
@ Schonhage-FFT (1977) O(d log d log log d)

Each one has a different complexity, and a different range where it
is the fastest.

Some authors say: “Toowm's strategy is impossible for GF(2)[x]".
| say: “It is possible and practical”

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials

Recall on Toom-k algorithm
5 phases

@ Splitting

Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Phase 1, choose a base, homogenise > see unbalanced

Choose a base Y = x” suitable to represent operands with k parts.

GF(2)[1] -
u= [1~ [L.

<
I
$

Marco Bodrato

(0xC1A000B0)

GF(2)[x] [y, 2]

1-v2+ []yz +[.]-22 =u
v L)yz)22 =

Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Recall on Toom-k algorithm
5 phases

@ Splitting: choose a base, homogenise
@ Evaluation

Phase 2, some linear algebra

Evaluate polynomials 1, v in 2k — 1 different points

(i, 1) € GF(2)[x]?, not just in GF(2)!

Obtain this multiplying a (non square) Vandermonde matrix by the
vector of coefficients.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Recall on Toom-k algorithm
5 phases

@ Splitting: choose a base, homogenise
@ Evaluation: 2x matrix-vector multiplication
© Multiplication

Phase 3, recursive application » see unbalanced

Compute evaluation of the product by multiplying evaluations.
(o, 8i) = uw(wi, 5i) - v(ai, 5i)

Degree k — 1 x degree k — 1 ~~ degree 2k — 2.

k parts x k parts ~» 2k — 1 parts. = 2k — 1 multiplications.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Recall on Toom-k algorithm
5 phases

@ Splitting: choose a base, homogenise

@ Evaluation: 2x matrix-vector multiplication
© Multiplication: (2k — 1)x recursive application
@ Interpolation

Phase 4, some more linear algebra

Interpolate to obtain coefficient of the product polynomial.

Obtain this multiplying the inverse of a (square) Vandermonde
matrix by the vector of evaluations.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Recall on Toom-k algorithm
5 phases

@ Splitting: choose a base, homogenise

@ Evaluation: 2x matrix-vector multiplication

© Multiplication: (2k — 1)x recursive application
Q Interpolation: inverse matrix-vector multiplication

© Recomposition

Phase 5, last details

We computed the product in GF(2)[x] [y, z].

Go back to GF(2)[x] with an evaluation:
u-v=u(Y,1)o(Y,1) =w(Y,1) = w € GF(2)[x]
where Y, is the "base” chosen during phase 1.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Recall on Toom-k algorithm
5 phases

@ Splitting: choose a base, homogenise

@ Evaluation: 2x matrix-vector multiplication

© Multiplication: (2k — 1)x recursive application
Q Interpolation: inverse matrix-vector multiplication

© Recomposition: shift and add.

Phase

Splitting order k gives number (2k — 1) of multiplication in
phase 3, and asymptotic behaviour O(d'°8x2k~1)_ Rigidly.
The choice of evaluation/interpolation points and operation
sequences for phases 2 and 4 gives the hidden constant.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

A way to Toom multiplication for binary polynomials Multiplication algorithms and complexity
Toom-Cook algorithm for polynomials, revisited
Operations and costs

Operations we count on for linear algebra

Basic on long operands (cost)
e Addition(Subtraction) (add) linear
e Mul/div by x" (optimised with shift) (shift) linear
o Multiplication by a “small” operand (Smul) linear
e Exact division by a “small” operand (8div) linear

@ linear combination /j < (¢j - [+ ¢k - Ix)/dj, may be i = j
Cj, Ck, d;j are “small” constants.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Naive evaluation
Searching for the optimal Toom-3 in GF(2)[x] Proposed graph search
The algorithm found

Evaluation is Matrix-vector multiplication

After splitting, operands are quadratic polynomials

u(y,z)=Usy?+Uryz+Upz?, Uy, Ur, Us € GF(2)[x],deg(U;) < b

Evaluate at 5 points: {(0,1), (1,1), (x,1), (x+1,1), (1,0)}

u(0,1) 1 Uo
oty N e
u(x,1) [=|1 <U1>: Uo + () Ur + (x7) U
ulx+L1)] |1 Uz \Uo+ (x £ 1)UL+ (C + 1))
u(1,0) 0 i
A naive implementation cost: 6 x add + + 2 X Smul.

First and last evaluations are trivial.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Naive evaluation
Searching for the optimal Toom-3 in GF(2)[x] Proposed graph search
The algorithm found

Evaluation is Matrix-vector multiplication

After splitting, operands are quadratic polynomials

u(y,z)=Usy?+Uryz+Upz?, Uy, Ur, Us € GF(2)[x],deg(U;) < b

Evaluate at 5 points: {(0,1), (1,1), (x,1), (x+1,1), (1,0)}

u(0,1) 1 Uo
bl \ 0, T e e
u(x,1) [=|1 <U1>: Uo + () Ur + (x7) U
u(x+1L1) [|1 U/ \Uo+ (x 1)UL+ (< + 1)U
u(1,0) 0 Us

A naive implementation cost: 8 x add +
First and last evaluations are trivial.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Naive evaluation
Searching for the optimal Toom-3 in GF(2)[x] Proposed graph search
The algorithm found

Search a sequence of operations on matrix lines

Start from the “empty” matrix, search a path to the goal

No temporaries: in-place operations.

11 0 0 ;1 0 0
I, 0 1 0 I, 0 1 0
.30 0 1 he—l_1+l_ I3 0 0 1
L 0 0 0 ~ L 1 1 0
L 0 0 O b 0 0 O
L 0 0 O K5 0 0 0
he—(x)I_o+(x*)I_3
o -

;i1 0 0 1 0 0
I, 0 1 0 0 1 0
30 0 1 0 0 1
L 0 x X 1 1 1
L 0 0 0 1 x X2
K 0 0 O 1 x4+1 x*+1

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Naive evaluation
Searching for the optimal Toom-3 in GF(2)[x] Proposed graph search
The algorithm found

Paths with different costs

even with same number of steps

Here two partial paths are shown.

I-1i1 0 0 I-1 i1 0 0
l>:0 1 0 I 0 1 0
.30 0 1 e—l_p+(x+1)-I_3 I_3:0 0 1
L1 1 1 - L1 1 1
L 10 0 O h 0 1 x+1
L 0 0 0 k0 0 0
The ()2 + (D)3 ()bt
1l !

;i1 0 0 1 0 0
I, 0 1 0 0 1 0
I 3:0 0 1 he—h+h 0 0 1
R 1 1 1 h 1 1 1
b 0 x x° 1 x+1 x*+1
Kk 0 0 0 0 0 0

Initial and final matrices coincide, but the cost is different.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Naive evaluation
Searching for the optimal Toom-3 in GF(2)[x] Proposed graph search
The algorithm found

Optimal evaluation sequence

The power of recycling

Path on the graph. ..

-1 100 100 1 0 0
l» 010 010 0 1 0
s 00 1 '1‘_"1@"2*"3 001 /zelwsj/_l 0 0 1
l1 O 0 0 l3<—(X)I_2+(X2)I_3 1 1 1 /3(_/3+/1 1 1 1
L 00O 000 1 X X2
5k 000 0 x x> 1 x+1x2+1

Total cost: 5 x add + 2 X shift
Naive was: 8 x add + 4 x shift

...immediately translates to temporary-less evaluation sequence

L1:U0+U1+U2;L3:(X)-U2+(X2)-U3;
Ly =13+ Uy, L3= L3+ L

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Searching for the optimal Toom-3 in GF(2)[x]

Naive evaluation
Proposed graph search
The algorithm found

After recursive multiplication w(a, 3) = u(a, B)v(a,)

w(0,1) 1 0 0 0 0 Wo
w(i,1) i1 i 1 i Wi
w(x, 1) 1 x X x3 x* Wa
w(x+1,1) 1 x+1 x*+1 (x+1)°® x*+1 Ws
w(i,0) 070 e 0 i W,

Graph search for interpolation too [ISSAC2007].

Cost found: 9 x add + 1 x shift + 1 x Smul + 2 x Sdiv
Multiplication by x3 + 1, exact divisions by x + 1, x> + x.
A Toom-3 in GF(2)[x] without divisions is not possible.

Final recomposition, doubly length coefficients

[..W3..]...W1..]
W4, .. W2..][...W0..]=w

Marco Bodrato

(0xC1A000B0)

7

Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Timings
More results
Conclusions Thanks

Thresholds for NTL-based implementations

Range where each algorithm is the fastest

Algorithm operand degree (bits) asymptotic
Naive < 190 0(d?)
Karatsuba 190 ... 360 O(d'o823)
Toom-3 360 ... 8,000 O(d'o&3%)
Toowm-4 8,000 ... 15,000 O(d'o&s7)
Schénhage-FFT | 15,000 < O(d log d log log d)

Those values highly depend on implementation, architecture. ..

Algorithms in blue where implemented by Paul Zimmermann

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

http://www.loria.fr/~zimmerma/irred/

Timings
More results
Conclusions Thanks

What else you can find on the paper?
Only about 10 pages of the paper reported in this presentation

Details skipped during presentation

@ Heuristics for graph search.
@ Operands with very different size
@ Bivariate (and sketches on multivariate)

@ Results for characteristic 0 (Z [x] and Z, + squaring)

The title of the paper is much longer!

Towards Optimal Toom-Cook Multiplication for Univariate and
Multivariate Polynomials in Characteristic 2 and 0

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

http://marco.bodrato.it/papers/Bodrato2007-OptimalToomCookMultiplicationForBinaryFieldAndIntegers.pdf
http://marco.bodrato.it/papers/Bodrato2007-OptimalToomCookMultiplicationForBinaryFieldAndIntegers.pdf

Timings
More results
Conclusions Thanks

That's all !

Thank you very much for your kind attention

Questions?

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

http://bodrato.it/papers/#WAIFI2007
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://marco.bodrato.it/papers/Bodrato2007-OptimalToomCookMultiplicationForBinaryFieldAndIntegers.pdf

@ More on computations
@ Exact division
@ Unbalanced multiplication
@ Choice of points

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Exact division
More on computations Unbalanced multiplication
Choice of points

Exact division
detailed only for D = x" + 1 € GF(2)[x]

We start from an element GF(2)[x] > a = gD, whose degree is
deg(a) = d + n. We want the quotient g. Compute with 2¥n < d.

g=a-(1+x")-(1+x2") - (14+x¥") (mod x9*1)

Division can be performed limb by limb starting from less
significant one, obtaining linear complexity.

Division limb by limb obtain linear complexity
fori=0...d/w
aj < a; - D71 (mod x")
D
di+1 < dj+1 — iz — ajy1 —aj >> (W — n)

xW

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

http://jjj.de/

Exact division
More on computations Unbalanced multiplication

Choice of points

Splitting for unbalanced operands

Degree 2 x degree 1 ~~ degree 3.
3 parts X 2 parts ~~ 4 parts.

GF(2)[x] = GF)I Ly, 2]
W= |booocoo] ~]2+ []yz +[..]'22 =u
v= [.....] ~ [.]1'y +[.]-z =v

< back to balanced

Unbalanced Toom-3
Degree 3 x degree 1 ~~ degree 4.
4 parts X 2 parts ~» 5 parts.

GF(2)[x] e GF(2)[x] Ly, 2]
[t] ~ [.]v3+[.] y2z+ [.]yz®2 +[.]-2°
[.....] ~ L.]y +[.] =z

Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

Marco Bodrato (0xC1A000B0)

Exact division
More on computations Unbalanced multiplication
Choice of points

How to choose evaluation/interpolation points

Points chosen for the results gives small degree increase and small
cost for ES/IS. Different choices are possible.

An anonymous referee and Richard Brent suggested the use of x*,
x" 41 for w-bits CPU. ES and IS basically remain the same.

When working on GF(2")[x] we are working on GF(2)[x], [X], so
we have to choose the use of x,x + 1 or X, X + 1, test for any
particular implementation.

Marco Bodrato (0xC1A000B0) Towards optimal Toom-Cook-3 multiplication in GF(2)[x]

	Workshop on Finite Fields
	A way to Toom multiplication for binary polynomials
	Multiplication algorithms and complexity
	Toom-Cook algorithm for polynomials, revisited
	Operations and costs

	Searching for the optimal Toom-3 in
	Naïve evaluation
	Proposed graph search
	The algorithm found

	Conclusions
	Timings
	More results
	Thanks

	Appendix
	Appendices
	More on computations
	Exact division
	Unbalanced multiplication
	Choice of points

