Towards optimal Тоом-Cook-3 multiplication for univariate binary polynomials

Marco Bodrato

Centro "Vito Volterra" - Università di Roma "Tor Vergata" - Italy

$$
\text { WAIFI } 2007 \text { - June } 21^{\text {th }}
$$

(1) A way to Toom multiplication for binary polynomials

- Multiplication algorithms and complexity
- Toom-Cook algorithm for polynomials, revisited
- Operations and costs
(2) Searching for the optimal Toom-3 in GF(2)[x]
- Naïve evaluation
- Proposed graph search
- The algorithm found
(3) Conclusions
- Timings
- More results
- Thanks

Polynomial multiplication in $\mathrm{GF}(2)[x]$

The problem

We start from two dense binary polynomials

$$
u, v \in \mathrm{GF}(2)[x]
$$

and we need the product

$$
w=u \cdot v \in \operatorname{GF}(2)[x]
$$

Assume monomial base.

$$
\begin{aligned}
u & =\quad x^{d_{u}} \cdots 0 \cdot x^{6}+1 \cdot x^{5}+1 \cdot x^{4}+0 \cdot x^{3}+1 \cdot x^{2}+1 \cdot x+1 \\
v & =\quad x^{d_{v}} \ldots 1 \cdot x^{6}+0 \cdot x^{5}+0 \cdot x^{4}+0 \cdot x^{3}+1 \cdot x^{2}+1 \cdot x+0 \\
\rightsquigarrow & =x^{d_{u}+d_{v}} \ldots 1 \cdot x^{6}+1 \cdot x^{5}+1 \cdot x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+1 \cdot x+0
\end{aligned}
$$

A way to Toom multiplication for binary polynomials

Polynomial multiplication in $\mathrm{GF}(2)[x]$

The problem

We start from two dense binary polynomials

$$
u, v \in \mathrm{GF}(2)[x]
$$

and we need the product

$$
w=u \cdot v \in \operatorname{GF}(2)[x]
$$

Compact dense representation, each bit store a coefficient.

$$
\begin{aligned}
u & = & {[1 \ldots 0110111] } \\
v & = & {[1 \ldots 1000110] } \\
\rightsquigarrow w & = & {[1 \ldots \ldots \ldots \ldots 1110010] }
\end{aligned}
$$

A way to Toom multiplication for binary polynomials

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

- Naïve $\mathrm{O}\left(d^{2}\right)$

Each one has a different complexity, and a different range where it is the fastest.

A way to Toom multiplication for binary polynomials

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

- Naïve
- Karatsuba (Тоом-2) (1962)
$\mathrm{O}\left(d^{2}\right)$
$\mathrm{O}\left(d^{\log _{2} 3}\right)$

Each one has a different complexity, and a different range where it is the fastest.

A way to Toom multiplication for binary polynomials

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

- Naïve
- Karatsuba (Тоом-2) (1962)
- Schönhage-FFT (1977)
$\mathrm{O}(d \log d \log \log d)$
Each one has a different complexity, and a different range where it is the fastest.

A way to Toom multiplication for binary polynomials

Polynomial multiplication algorithms

Many algorithms are known for polynomial multiplication.

- Naïve
- Karatsuba (Тоом-2) (1962)
- Тоом-Cook-k (1963)
- Schönhage-FFT (1977)

$$
\begin{array}{r}
\mathrm{O}\left(d^{2}\right) \\
\mathrm{O}\left(d^{\log _{2} 3}\right) \\
\mathrm{O}\left(d^{\log _{k} 2 k-1}\right)
\end{array}
$$

$\mathrm{O}(d \log d \log \log d)$

Each one has a different complexity, and a different range where it is the fastest.

Some authors say: "Тоом's strategy is impossible for GF(2)[x]". I say: "It is possible and practical"

Recall on Тоом- k algorithm

5 phases
(1) Splitting

Phase 1, choose a base, homogenise

Choose a base $Y=x^{b}$ suitable to represent operands with k parts.

GF (2) $[x]$
\leadsto
$\leadsto[\ldots] \cdot y^{2}+$
[...].yz
$+[\ldots] \cdot z^{2}=\mathfrak{u}$
$u=[\ldots . . .$.
$v=[\ldots \ldots \ldots] \rightsquigarrow[\ldots] \cdot y^{2}+$
[...].yz
$+[\ldots] \cdot z^{2}=\mathfrak{v}$

A way to Toom multiplication for binary polynomials

Recall on Тоом- k algorithm

5 phases
(1) Splitting: choose a base, homogenise
(2) Evaluation

Phase 2, some linear algebra

Evaluate polynomials $\mathfrak{u}, \mathfrak{v}$ in $2 k-1$ different points $\left(\alpha_{i}, \beta_{i}\right) \in \mathrm{GF}(2)[x]^{2}$, not just in GF(2)!
Obtain this multiplying a (non square) Vandermonde matrix by the vector of coefficients.

Recall on Тоом- k algorithm

(1) Splitting: choose a base, homogenise
(2) Evaluation: $2 \times$ matrix-vector multiplication
(3) Multiplication

Phase 3, recursive application

Compute evaluation of the product by multiplying evaluations.
$\mathfrak{w}\left(\alpha_{i}, \beta_{i}\right)=\mathfrak{u}\left(\alpha_{i}, \beta_{i}\right) \cdot \mathfrak{v}\left(\alpha_{i}, \beta_{i}\right)$
Degree $k-1 \times$ degree $k-1 \rightsquigarrow$ degree $2 k-2$.
k parts $\times k$ parts $\rightsquigarrow 2 k-1$ parts. $\Rightarrow 2 k-1$ multiplications.

A way to Toom multiplication for binary polynomials

Recall on Тоом- k algorithm

(1) Splitting: choose a base, homogenise
(2) Evaluation: $2 \times$ matrix-vector multiplication
(3) Multiplication: $(2 k-1) \times$ recursive application
(9) Interpolation

Phase 4, some more linear algebra

Interpolate to obtain coefficient of the product polynomial.

Obtain this multiplying the inverse of a (square) Vandermonde matrix by the vector of evaluations.

Recall on Тоом- k algorithm

(1) Splitting: choose a base, homogenise
(2) Evaluation: $2 \times$ matrix-vector multiplication
(3) Multiplication: $(2 k-1) \times$ recursive application
(9) Interpolation: inverse matrix-vector multiplication
(3) Recomposition

Phase 5, last details

We computed the product in $\operatorname{GF}(2)[x][y, z]$.
Go back to $\mathrm{GF}(2)[x]$ with an evaluation:
$u \cdot v=\mathfrak{u}(Y, 1) \mathfrak{v}(Y, 1)=\mathfrak{w}(Y, 1)=w \in \operatorname{GF}(2)[x]$ where Y, is the "base" chosen during phase 1 .

Recall on Тоом- k algorithm

(1) Splitting: choose a base, homogenise
(2) Evaluation: $2 \times$ matrix-vector multiplication
(3) Multiplication: $(2 k-1) \times$ recursive application
(9) Interpolation: inverse matrix-vector multiplication
(3) Recomposition: shift and add.

Phase 2 and 4, are critical

Splitting order k gives number $(2 k-1)$ of multiplication in phase 3 , and asymptotic behaviour $\mathrm{O}\left(d^{\log _{k} 2 k-1}\right)$. Rigidly. The choice of evaluation/interpolation points and operation sequences for phases 2 and 4 gives the hidden constant.

Operations we count on for linear algebra

Basic on long operands

- Addition(Subtraction)
- Mul/div by x^{n} (optimised with shift)
- Multiplication by a "small" operand
- Exact division by a "small" operand
(add) linear
(shift) linear
(Smul) linear
(Sdiv) linear
"small" actually means fixed: asymptotically small. Typically fits in 1 BYTE.

Composite

- linear combination $I_{i} \leftarrow\left(c_{j} \cdot I_{j}+c_{k} \cdot I_{k}\right) / d_{i}$, may be $i=j$ c_{j}, c_{k}, d_{i} are "small" constants.

Evaluation is Matrix-vector multiplication

After splitting, operands are quadratic polynomials

$u(y, z)=U_{2} y^{2}+U_{1} y z+U_{0} z^{2}, \quad U_{0}, U_{1}, U_{2} \in \operatorname{GF}(2)[x], \operatorname{deg}\left(U_{i}\right)<b$

Evaluate at 5 points: $\{(0,1),(1,1),(x, 1),(x+1,1),(1,0)\}$

$$
\left(\begin{array}{c}
u(0,1) \\
u(1,1) \\
u(x, 1) \\
u(x+1,1) \\
u(1,0)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & x & x^{2} \\
1 & x+1 & x^{2}+1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
U_{0} \\
U_{1} \\
U_{2}
\end{array}\right)=\left(\begin{array}{c}
U_{0} \\
U_{0}+U_{1}+U_{2} \\
U_{0}+(x) U_{1}+\left(x^{2}\right) U_{2} \\
U_{0}+(x+1) U_{1}+\left(x^{2}+1\right) U_{2}
\end{array}\right)
$$

A naïve implementation cost: $6 \times$ add $+2 \times$ shift $+2 \times$ Smul. First and last evaluations are trivial.

Evaluation is Matrix-vector multiplication

After splitting, operands are quadratic polynomials

$u(y, z)=U_{2} y^{2}+U_{1} y z+U_{0} z^{2}, \quad U_{0}, U_{1}, U_{2} \in \operatorname{GF}(2)[x], \operatorname{deg}\left(U_{i}\right)<b$

Evaluate at 5 points: $\{(0,1),(1,1),(x, 1),(x+1,1),(1,0)\}$

$$
\left(\begin{array}{c}
u(0,1) \\
u(1,1) \\
u(x, 1) \\
u(x+1,1) \\
u(1,0)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & x & x^{2} \\
1 & x+1 & x^{2}+1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
U_{0} \\
U_{1} \\
U_{2}
\end{array}\right)=\left(\begin{array}{c}
U_{0} \\
U_{0}+U_{1}+U_{2} \\
U_{0}+(x) U_{1}+\left(x^{2}\right) U_{2} \\
U_{0}+(x+1) U_{1}+\left(x^{2}+1\right) U_{2}
\end{array}\right)
$$

A naïve implementation cost: $8 \times$ add $+4 \times$ shift.
First and last evaluations are trivial.

Search a sequence of operations on matrix lines

Start from the "empty" matrix, search a path to the goal
No temporaries: in-place operations.

$$
\begin{aligned}
& \left(\begin{array}{c:ccc}
I_{-1} & 1 & 0 & 0 \\
I_{-2} & 0 & 1 & 0 \\
I_{-3} & 0 & 0 & 1 \\
\hline I_{1} & 0 & 0 & 0 \\
I_{2} & 0 & 0 & 0 \\
I_{3} & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow[1]{I_{1} \leftarrow I_{-1}+I_{-2}} \leadsto\left(\begin{array}{l:lll}
I_{-1} & 1 & 0 & 0 \\
I_{-2} & 0 & 1 & 0 \\
I_{-3} & 0 & 0 & 1 \\
\hline I_{1} & 1 & 1 & 0 \\
I_{2} & 0 & 0 & 0 \\
I_{3} & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{l:lll}
I_{-1} & 1 & 0 & 0 \\
I_{-2} & 0 & 1 & 0 \\
I_{-3} & 0 & 0 & 1 \\
\hline I_{1} & 0 & x & x^{2} \\
I_{2} & 0 & 0 & 0 \\
I_{3} & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Order of nontrivial values doesn't matter.

Paths with different costs

even with same number of steps

Here two partial paths are shown.

$$
\begin{aligned}
& \left(\begin{array}{l:lll}
I_{-1} & 1 & 0 & 0 \\
I_{-2} & 0 & 1 & 0 \\
I_{-3} & 0 & 0 & 1 \\
\hline I_{1} & 1 & 1 & 1 \\
I_{2} & 0 & 0 & 0 \\
I_{3} & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l:lll}
I_{-1} & 1 & 0 & 0 \\
I_{-2} & 0 & 1 & 0 \\
I_{-3} & 0 & 0 & 1 \\
\hline I_{1} & 1 & 1 & 1 \\
I_{2} & 0 & x & x^{2} \\
I_{3} & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Initial and final matrices coincide, but the cost is different.

Optimal evaluation sequence

The power of recycling

Path on the graph...

$$
\left(\begin{array}{c:ccc}
I_{-1} & 1 & 0 & 0 \\
I_{-2} & 0 & 1 & 0 \\
I_{-3} & 0 & 0 & 1 \\
\hline I_{1} & 0 & 0 & 0 \\
I_{2} & 0 & 0 & 0 \\
I_{3} & 0 & 0 & 0
\end{array}\right) \underset{\substack{ \\
I_{3} \leftarrow(x) I_{-2}+\left(x^{2}\right) I_{-3} \\
I_{-3}+I_{-2}+I_{-3}}}{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline 1 & 1 & 1 \\
0 & 0 & 0 \\
0 & x & x^{2}
\end{array}\right) \underset{\substack{I_{3} \leftarrow I_{3}+I_{-1} \\
I_{3} \leftarrow I_{3}+I_{1}}}{\substack{I_{1}}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\hline 1 & 1 & 1 \\
1 & x & x^{2} \\
\underline{1} x+1 & x+1
\end{array}\right)}
$$

Total cost: $5 \times$ add $+2 \times$ shift
Naïve was: $8 \times$ add $+4 \times$ shift
....immediately translates to temporary-less evaluation sequence

$$
\begin{aligned}
& L_{1}=U_{0}+U_{1}+U_{2} ; L_{3}=(x) \cdot U_{2}+\left(x^{2}\right) \cdot U_{3} \\
& L_{2}=L_{3}+U_{0} ; L_{3}=L_{3}+L_{1}
\end{aligned}
$$

After recursive multiplication $w(\alpha, \beta)=u(\alpha, \beta) v(\alpha, \beta)$

$$
\left(\begin{array}{c}
w(0,1) \\
w(1,1) \\
w(x, 1) \\
w(x+1,1) \\
w(1,0)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & x & x^{2} & x^{3} & x^{4} \\
1 & x+1 & x^{2}+1 & (x+1)^{3} & x^{4}+1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
W_{0} \\
W_{1} \\
W_{2} \\
W_{3} \\
W_{4}
\end{array}\right)
$$

Graph search for interpolation too [ISSAC2007].
Cost found: $9 \times$ add $+1 \times$ shift $+1 \times$ Smul $+2 \times$ Sdiv Multiplication by $x^{3}+1$, exact divisions by $x+1, x^{2}+x$. A Тоом-3 in $\mathrm{GF}(2)[x]$ without divisions is not possible.

Final recomposition, doubly length coefficients

$$
\begin{gathered}
{[\ldots W 3 \ldots][\ldots W 1 \ldots]} \\
{[\ldots W 4 \ldots][\ldots W 2 \ldots][\ldots W 0 \ldots]=w}
\end{gathered}
$$

Thresholds for NTL-based implementations

Range where each algorithm is the fastest

Algorithm	operand degree (bits)			asymptotic
Naïve	\times			190
Karatsuba	190	\ldots	360	$\mathrm{O}\left(d^{2}\right)$
Тоом-3	360	\ldots	8,000	$\mathrm{O}\left(d^{\log _{2} 3}\right)$
Тоом-4	8,000	\ldots	15,000	$\mathrm{O}\left(d^{\log _{4} 7}\right)$
Schönhage-FFT	15,000	$<$		$\mathrm{O}(d \log d \log \log d)$

Those values highly depend on implementation, architecture...

Algorithms in blue where implemented by Paul Zimmermann

What else you can find on the paper?

Only about 10 pages of the paper reported in this presentation

Details skipped during presentation

- Heuristics for graph search.
- Operands with very different size
- Bivariate (and sketches on multivariate)
- Results for characteristic $0(\mathbb{Z}[x]$ and \mathbb{Z}, + squaring)

The title of the paper is much longer!
Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0

Thank you very much for your kind attention

Questions?

> Presentation will be available on the web: http://bodrato.it/papers/\#WAIFI2007, released under a CreativeCommons BY-NC-SA licence. @®@(1)
Full paper too is available on web.
4) More on computations

- Exact division
- Unbalanced multiplication
- Choice of points

Exact division

detailed only for $D=x^{n}+1 \in \operatorname{GF}(2)[x]$

We start from an element $\operatorname{GF}(2)[x] \ni a=q D$, whose degree is $\operatorname{deg}(a)=d+n$. We want the quotient q. Compute with $2^{k} n \leqslant d$.

$$
q \equiv a \cdot\left(1+x^{n}\right) \cdot\left(1+x^{2 n}\right) \cdots\left(1+x^{2^{k} n}\right) \quad\left(\bmod x^{d+1}\right)
$$

Division can be performed limb by limb starting from less significant one, obtaining linear complexity.

Division limb by limb obtain linear complexity

$$
\begin{aligned}
& \text { for } i=0 \ldots d / w \\
& \quad a_{i} \leftarrow a_{i} \cdot D^{-1}\left(\bmod x^{w}\right) \\
& \quad a_{i+1} \leftarrow a_{i+1}-\frac{a_{i} \cdot D}{x^{w}}=a_{i+1}-a_{i} \gg(w-n)
\end{aligned}
$$

Thanks to Jörg Arndt for suggesting a clean description

Splitting for unbalanced operands

Тоом-2.5

Degree $2 \times$ degree $1 \rightsquigarrow$ degree 3 .
3 parts $\times 2$ parts $\rightsquigarrow 4$ parts.

Unbalanced Тоом-3

Degree $3 \times$ degree $1 \rightsquigarrow$ degree 4 .
4 parts $\times 2$ parts $\rightsquigarrow 5$ parts.

How to choose evaluation/interpolation points

Points chosen for the results gives small degree increase and small cost for ES/IS. Different choices are possible.

An anonymous referee and Richard Brent suggested the use of x^{w}, $x^{w}+1$ for w-bits CPU. ES and IS basically remain the same.

When working on $\mathrm{GF}\left(2^{n}\right)[x]$ we are working on $\mathrm{GF}(2)[x]_{/ p}[X]$, so we have to choose the use of $x, x+1$ or $X, X+1$, test for any particular implementation.

